A Block Solver for the Exponentially Fitted IIPG-0 Method
نویسندگان
چکیده
We consider an exponentially fitted discontinuous Galerkin method for advection dominated problems and propose a block solver for the resulting linear systems. In the case of strong advection the solver is robust with respect to the advection direction and the number of unknowns.
منابع مشابه
A Simple Uniformly Convergent Iterative Method for the Non-symmetric Incomplete Interior Penalty Discontinuous Galerkin Discretization
We introduce a uniformly convergent iterative method for the systems arising from non-symmetric IIPG linear approximations of second order elliptic problems. The method can be viewed as a block Gauß–Seidel method in which the blocks correspond to restrictions of the IIPG method to suitably constructed subspaces. Numerical tests are included, showing the uniform convergence of the iterative meth...
متن کاملL−estimates for the DG IIPG-0 scheme
We discuss the optimality in L2 of a variant of the Incomplete Discontinuous Galerkin Interior Penalty method (IIPG) for second order linear elliptic problems. We prove optimal estimate, in two and three dimensions, for the lowest order case under suitable regularity assumptions on the data and on the mesh. We also provide numerical evidence, in one dimension, of the necessity of the regularity...
متن کاملA Highly Accurate Solver for Stiff Ordinary Differential Equations
We introduce a solver for stiff ordinary differential equations (ODEs) that is based on the deferred correction scheme for the corresponding Picard integral equation. Our solver relies on the assumption that the solution can be accurately represented by a combination of carefully selected complex exponentials. The solver’s accuracy and stability rely on the computation of highly accurate quadra...
متن کاملNumerical solution of a diffusion problem by exponentially fitted finite difference methods
This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equa...
متن کاملWe a Highly Accurate Solver for Stiff Ordinary Differential Equations
correction scheme for the corresponding Picard integral equation. Our solver relies on the assumption that the solution can be accurately represented by a combination of carefully selected complex exponentials. The solver’s accuracy and stability rely on the computation of highly accurate quadrature weights for the integration of the selected exponentials on equidistant nodes. We analyze our so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013